
Software Evolution Sonification

Pedro O. Raimundo, Sandro S. Andrade, Renato Novais

GSORT Distributed Systems Group
Federal Institute of Education, Science, and Technology of Bahia

Av. Araújo Pinho, 39. Canela. Salvador – Bahia

{pedrooraimundo, sandroandrade, renato}@ifba.edu.br

Abstract. Program comprehension is one of the most challenging tasks under-
taken by software developers. Achieving a firm grasp on the software’s structure,
behavior and evolution directly from its development artifacts is usually a time-
consuming and challenging task. Software visualization tools have effectively
been used to assist developers on these tasks, motivated by the use of images
as outstanding medium for knowledge dissemination. Under such perspective,
software sonification tools emerge as a novel approach to convey temporal and
concurrent streams of information due to the their inherently temporal nature.
In this work, we describe how software evolution information can be effectively
conveyed by audio streams; how music, software architecture concepts and tech-
niques come together to achieve such means; and present a framework for soni-
fication of extracted evolutionary metrics from software repositories.

1. Introduction
Comprehending computer programs is a notoriously difficult task that involves gathering
information from diverse sources (source code, documentation, runtime behavior, version
history, just to mention a few) and gets progressively harder as the program’s size and
complexity grow [Stefik et al. 2011]. Synthesizing that information to tackle the develop-
ment process effectively and efficiently is an endeavor that requires time, experience and,
more often than not, peer support.

Tools are usually employed in order to help the decision making and understand-
ing of the developers. Such tools range from built-in Integrated Development Environ-
ment (IDE) helpers and code metric viewers to complex software visualization solutions,
focusing on conveying information to the user through the computer screen using tables,
charts, drawings or animations due to their higher apprehension, if compared with a naive
representation of the same data.

While such approaches are helpful in the comprehension process, aural represen-
tations of software structure and behavior have been shown to excel at representing struc-
tural [Vickers 1999], relational [Berman 2011] and parallel or rapidly changing behav-
ioral data [Sonnenwald et al. 1990] even for individuals without extensive musical back-
ground [Berman 2011, Vickers and Alty 2002, Vickers and Alty 1998].

Software evolution adds another dimension to the problem since it forces the sub-
ject to add another layer of understanding to the structural aspects of a software program
– the temporal layer. Common analysis requires, for example, information about the re-
lationship between components of a system and lower-level information such as lines of
code and fan-in/fan-out values per component. Evolutionary analysis can, for instance,



consume the results of the regular analysis procedures to yield higher-level information
such as architectural drift in a given time slice, through the use of the project’s meta-data
(number of commits, bugs reported, time between releases, etc). Evolutionary analysis
can also provide environment-related information which is particularly useful to manage
large program evolution and continuing change [Lehman 1980] in computer systems.

In order to convey such information through the means of aural representations
it is possible to use any kind of sound. Vickers and Alty proposed that these constructs
are more effective if they follow culturally-appropriate styles, conceived analogously to
words, which carry meaning to an individual native to or familiar with a specific lan-
guage. Furthermore, they also found that western musical forms (based on the seven-note
diatonic scale) are more readily recognized around the world [Vickers and Alty 2002].

We present a novel approach to transmit information about software evolution by
exploiting sound’s uniquely temporal nature and aural events such as melody, harmony
and rhythm. Different events are used because each event has a distinct impact on the
listener and they can be mixed and matched together to convey different streams of infor-
mation, without being confusing or overwhelming.

The key contributions of this work are as follows. First, we propose a sonification
framework in which the evolutionary aspects of a piece of software can be represented as
sound streams, in an unobtrusive and noninvasive way. Second, we ran initial validation
studies to assert that sonifications carry sufficient meaning to represent the evolutionary
aspects of both large and small software projects.

The rest of this work is organized as follows. Section 2 details the pre-existing
technologies and techniques utilized to reify the artifacts of this work, and summarizes
the developed procedure. Section 3 briefly enumerates some of the implementation de-
tails and tools adopted in the framework’s development. Section 4 details the validation
procedure and presents an analysis of the obtained results. Section 5 summarizes the con-
tent and purpose of this paper, epitomizes the main ideas presented herein, and highlight
some venues of future studies and experiments in this area.

2. Proposed Approach
This paper proposes a sonification framework that sonifies software evolution by follow-
ing three main steps: source code retrieval, data extraction, and sound synthesis. The
following sections detail the solution’s general architecture and the sonification process.

2.1. Proposed Architecture

Figure 1 depicts the structural architectural view of the proposed framework, presenting
three specialized software modules and the interactions between them and their shared
working set. This approach allows each module to evolve and adapt independently, as
long as the format of their shared data and their communication interfaces remains un-
changed, and also enables independent reuse of each module. Details on the actual soni-
fication process can be found in Sections 2.5 and 3.

2.2. Source Code Retrieval

Version control systems (VCS) create repositories by storing an initial version of the
source code and then successive versions of the files by using delta compression. This



Figure 1. Structural view of the proposed framework.

allows for efficient storage and seamless switching between different snapshots of the
versioned project.

Software evolution is an inherently temporal phenomenon. As such, it is funda-
mental to track the changes in a program’s structure and code-metrics across a period of
time to achieve a proper representation of it. This involves retrieving snapshots of the soft-
ware’s source code at different revisions. VCS greatly simplify this task since repositories
created by such tools can be systematically transversed, processed and compared.

In order to extract meaningful data from software repositories and generate in-
teresting sonifications, the metrics extractor module uses filters. While the framework
includes some filters to demonstrate its capabilities, the ability to easily write and com-
bine new filters is the highlight that allows the user to transverse source code repositories
in order to achieve virtually any goal.

2.3. Data Extraction

The broad field of investigations that generally deal with extracting data from software
repositories in order to uncover trends, relationships and extract pertinent information is
called Mining Software Repositories (MSR). Software repositories refer, in this context,
to the entirety of development artifacts that are produced during the process of software
development and evolution (usually excluding by-products of the building process).

The content of these aggregated data sources exists throughout the entirety of the
project’s life cycle and carries a wealth of information that includes but is not limited
to: the versions that the system has gone through, meta-data about the revisions of the
software (as seen in Subsection 2.2), the rationale for project’s architectural choices and
discussions between the project’s members. In this work, the focus is not on answering
questions through MSR but using it to display the software evolutionary aspects focusing
on the changes to properties rather than internal measuring.

Our approach does not, though, contemplate the specialized software evolution
metrics developed by Lehman and Ramil in [Ramil and Lehman 2000]. The rationale is
that those metrics focus heavily on cost-estimation and applied aspects of project man-
agement, whereas this work focuses on program comprehension.



2.4. Sound Synthesis
Martin Russ [Russ 2009] defines Sound Synthesis as:

(...) the process of producing sound. It can reuse existing sounds by pro-
cessing them, or it can generate sound electronically or mechanically. It
may use mathematics, physics or even biology; and it brings together art
and science in a mix of musical skill and technical expertise (...)

This is a broad, but sufficient, definition for the purposes of this work, in which the
ultimate goal is to electronically generate sounds that are both meaningful and musical.

The artistic vein of sound and music allows sonifications to rouse specific emo-
tions on the listener, the displays of technical expertise and emotion by musicians also
greatly affect the impression left on the listener. While raw sound synthesis lacks these
qualities, Vickers and Alty [Vickers and Alty 2013] go to great lengths to assert that the
aesthetics and structural motifs of music itself determine the effects of sonifications on
readers; along with cultural and psychological aspects and specific preferences of each
subject.

In this work, sound is produced electronically through a tool for musical notation
that utilizes its own Domain-Specific Language. This approach ensures that the aural
metaphors developed can be systematically associated with the numbers that represent
software metrics, without the element of musical performance.

2.5. Summarized Procedure
Working with the building blocks detailed above, the sonification process we propose
herein can be summarized as the following automatic steps:

1. Download a source-code repository through a version control system;
2. Extract the desired metrics from the repository’s meta-data or several versions of

the source-code;
3. Process the extracted metrics along with a pre-defined sonification template.

Some implementation details of this process and the adopted technologies are
detailed in the next section.

3. Implementation
The proposed framework was developed using the Java programming language, chosen
due to its good balance of productivity, debuggability and the pre-existence of several
libraries and components necessary for this implementation.

The initial implementation of the framework adopted Git as the Version Control
System, the FreeMarker engine [Revusky et al. 2015] to process the sonification tem-
plates and the GNU Lilypond music notation tool [Nienhuys and Nieuwenhuizen 2015]
to generate the aural output with the desired characteristics.

In order do run the exploratory study, presented in Section 4, the first implementa-
tion of the framework is a simple Java application that, given the URL of a Git repository,
opens such a repository locally (downloading it over the Internet if not already present),
extracts the desired metrics for a predefined period and generates the corresponding soni-
fication of the extracted data in the .ly file format. Then, Lilypond processes this file and
generates both MIDI and PDF files with the sonification results.



Figure 2. Graphical User Interface of the runner class.

This implementation includes extractors for two project metrics: commits per
month and committers per month. In the context of open-source software, these two met-
rics provide insight on the overall health and the community around a software project.

The sonification template included maps the commits per month metric to a spe-
cific pitch, and the number of committers per month to a number of notes. Subsection 4.2
elaborates further on how this is represented on the finished sonification.

4. Validation (Exploratory Study)
A exploratory study was conducted to validate the proposed framework. The experimental
procedure, their goals and our findings are detailed in the following subsections

4.1. Goals

The exploratory study was undertaken in order to assert whether or not the sonifications
rendered from evolutionary data gathered from source-code repositories are meaningful
and easily understood. Additionally, this exploratory study helps determine whether or
not the basic implementation of the framework has enough assets to render useful sonifi-
cations.

4.2. Procedure

For this exploratory study, two open-source office suites were selected as subjects: the
KOffice suite – whose developed ceased in 2013 and the LibreOffice suite – whose devel-
opment is still well underway and is largely utilized by the open-source community.

We selected the period from 01/01/2010 to 31/04/2013 and generated a sonifica-
tion of the interpolated evolutionary metrics. The seemingly arbitrary finish date for the
sonification period corresponds to the month before the last non-automatic commit of the
KOffice project, because KOffice’s activity ceased midway through the month, whereas
LibreOffice continued all throughout.

The monthly number of commits in each project was mapped to the pitch rep-
resenting that specific month, while the number of committers for a given month cor-
responded to the number of notes it lasts for, as specified by the default template file.
The extracted data was interpolated to make sure the minimum and maximum number of
commits correspond to the pitches of C2 (two octaves below the middle C) and C8 (four
octaves above the middle C), while the minimum and maximum number of committers
correspond to, respectively, 2 and 8 notes; such interpolation strategy was utilized in the
extractor classes to represent both projects in a similar perspective, even through their
numbers were in slightly different orders of magnitude. Snippets of the musical scores
for the sonifications can be seen in Figures 3 and 4.

The finished sonifications were qualitatively analyzed in order to determine if the
desired mappings were correctly reproduced in the sonification, if both projects were



Figure 3. Snippet of the musical score for LibreOffice’s sonification.

Figure 4. Snippet of the musical score for KOffice’s sonification.

represented in a similar fashion, and if it is possible to get an insight on the project’s
health and activity through sonification alone. It should be noted that the musical scores
are provided here as a printed alternative to the sound output, which is the focus of the
work.

4.3. Results

A musical analysis of the sonification results is in order to further explain the impact of
the elected aural metaphors in the process of program comprehension. In Figure 5, an
annotated version of the previously shown snippet of LibreOffice’s evolution is provided
to support this analysis process.

First, let’s take a look on the differences in pitch and their expected effects in
the user of the auralizations. The blue and yellow highlights in Figure 5 correspond to
the months with the least and the most commits, respectively; it is expected that this
mapping feels the most natural to any individuals familiar with western forms of music,
where higher tones are usually employed to rouse stimulant effects and lower tones inspire
serenity and quietude.

The second aural event utilized in this mapping, number of notes, corresponds to
the amount of people involved in a month’s commits, and determines how many notes
with the same pitch will be played in succession. This metaphor is closely related to
sound’s inherently temporal nature and, once trained, users should quickly internalize
that more notes equals more people.

It should be noted that no additional effort is necessary to convey or understand
temporal aspects in sonification. Once a user is trained to understand a specific set of

Figure 5. Anotated snippet of the musical score for LibreOffice’s sonification.



metrics and aural events, the passing of the time is immediately perceived upon exposure
to the sonifications.

One apparent shortcoming of these mappings is that two consecutive months with
similar amounts of commits and different amounts of committers will show up as a single
longer string of notes with similar pitch, this is by design because these larger repeated
strings are promptly detected by users and may highlight a strong burst of activity or
inactivity, a very important moment in the projects history or both. Months could be
artificially separated by pauses or other musical elements, this was avoided until further
empirical results confirm or deny the importance of this event.

While further experiments are necessary to confirm the effects of these mappings,
previous studies have shown that musical auralizations with western characteristics are
promptly apprehended by listeners of diverse backgrounds with or without previous mu-
sical training [Berman 2011, Vickers and Alty 2002].

Despite the project’s numbers being in different orders of magnitude (LibreOffice
has always had a lot more activity than KOffice), the sonifications were able to represent
both projects in a comparable scale. If a software project evolves quickly and ascends to
a larger scale, the latest sonification generated should be the one taken into consideration,
since it will accurately represent this event by attributing lower pitches and less notes to
the previous months, in contrast with the higher values of most recent ones. No additional
training should be required to make use of the new sonifications as long as the mappings
and metrics itself do not change.

Through analysis of the sonifications, some conclusions were drawn. First, it is
possible to coherently map data to aural events. Second, through sonification it is possible
to analyze large and small software projects under a similar perspective, preserving the
evolutionary trends of each project and investing roughly the same amount of effort for
each project.

From an evolutionary standpoint, the sonifications evidenced what could be an im-
portant pattern. In KOffice’s sonification there were mostly extreme frequencies, meaning
that there were many moments of heavy development and long periods of very modest
development. In contrast, LibreOffice’s sonification had mostly moderate frequencies,
with the pitches varying in a roughly wavelike pattern, even in its most extreme mo-
ments, meaning that development sprints were cyclical and well-defined. More projects
should be analyzed in order to confirm or deny the validity of these patterns. The wav
files for the evolution sonification of LibreOffice and KOffice projects are available at
http://wiki.ifba.edu.br/sonification.

5. Conclusion
In this work, we presented some of the pre-existing technologies and techniques that
give grounds to the implementation of a sonification framework for software evolution,
discussed several implementation details of the proposed tool and performed initial val-
idation of the framework and its results, we ultimately conclude that sound is a medium
worth investigating for the transmission of evolutionary aspects of software.

Future efforts planned in this line of work include a systematic literature review of
all the studies that were revealed in this work, to foster future research efforts in the field,
and further experimental works to assert the effectiveness of the proposed sonification



strategy, minimize the risks to the validation presented here, and try to uncover further
evolutionary patterns that are better exposed by aural metaphors.

Acknowledgements
This work was partially supported by the National Institute of Science and Technology
for Software Engineering (INES1), funded by CNPq and FACEPE, grants 573964/2008-
4 and APQ-1037-1.03/08; and the Fraunhofer Project Center for Software and Systems
Engineering at UFBA2.

References
Berman, L. (2011). Program Comprehension Through Sonification. PhD thesis, Durham

University.

Lehman, M. M. (1980). On understanding laws, evolution, and conservation in the large-
program life cycle. Journal of Systems and Software, 1:213–221.

Nienhuys, H.-W. and Nieuwenhuizen, J. (1996–2015). GNU LilyPond. http://
lilypond.org/.

Ramil, J. F. and Lehman, M. M. (2000). Metrics of software evolution as effort predictors -
A case study. In 2000 International Conference on Software Maintenance, ICSM 2000,
San Jose, California, USA, October 11-14, 2000, pages 163–172. IEEE Computer
Society.

Revusky, J., Szegedi, A., and Dékány, D. (2002–2015). FreeMarker. http://
freemarker.org/.

Russ, M. (2009). Chapter 1 - Background. In Russ, M., editor, Sound Synthesis and
Sampling (Third Edition), Music Technology, pages 3 – 86. Focal Press, Oxford, third
edition edition.

Sonnenwald, D., Gopinath, B., Haberman, G., Keese, W., and Myers, J. (1990). InfoS-
ound: An audio aid to program comprehension, volume 2, pages 541–546. Publ by
Western Periodicals Co.

Stefik, A., Hundhausen, C. D., and Patterson, R. (2011). An empirical investigation into
the design of auditory cues to enhance computer program comprehension. Int. J. Hum.-
Comput. Stud., 69(12):820–838.

Vickers, P. (1999). CAITLIN : implementation of a musical program auralisation system
to study the effects on debugging tasks as performed by novice Pascal programmers.
PhD thesis, Loughborough University.

Vickers, P. and Alty, J. (1998). Towards some organising principles for musical program
auralisations. In Proceedings of the Fifth International Conference on Auditory Dis-
play.

Vickers, P. and Alty, J. L. (2002). Musical program auralisation: a structured approach to
motif design. Interacting with Computers, 14(5):457–485.

Vickers, P. and Alty, J. L. (2013). The well-tempered compiler? the aesthetics of program
auralization. CoRR, abs/1311.5434.

1www.ines.org.br
2http://wiki.dcc.ufba.br/FPC


