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Abstract. Code smells are code fragments that can hinder the evolution and 

maintenance of software systems. Their detection is a challenge for developers 

and their informal definition leads to the implementation of multiple detection 

techniques by tools. This paper aims to evaluate and compare three code smell 

detection tools, namely inFusion, JDeodorant and PMD. These tools were 

applied to different versions of a same system. The results were analyzed to 

answer four research questions related to the evolution of the smells, the 

relevance of the smells detected, and the agreement among tools. This study 

allowed us to understand the evolution of code smells in the target system and 

to evaluate the accuracy of each tool in the detection of three code smells: 

God Class, God Method, and Feature Envy. 

1. Introduction 

Code smells are symptoms that something may be wrong in the system code [Fowler 

1999]. They can degrade system quality aspects, such as maintainability, and potentially 

introduce flaws [Yamashita and Counsell 2013]. Different studies report that the cost of 

software maintenance is about 70-80% of the total project cost [Dehagani and Hajrahimi 

2013]. Therefore, it is important to detect code smells throughout the software 

development. However, code smell detection is a complex, tedious and error prone task. 

In this context, tools for automatic detection of code smells can assist developers in the 

identification of affected entities, facilitating the detection task. This goal is 

accomplished by the implementation of different detection techniques that allow the 

tools to highlight the entities most likely to present code smells. 

Nowadays, there are an increasing number of software analysis tools available 

for detecting bad programming practices [Fontana et al. 2012] [Murphy-Hill and Black 

2010] [Tsantalis et al. 2008] and, in general, there is increasing awareness of software 

engineers about the structural quality of features under development. The question is 

how to assess and compare tools to select which is more efficient in a given situation. 

However, evaluation of the effectiveness of tools for detecting code smells presents 

some challenges [Fontana et al. 2012]. First, there are different interpretations for each 

code smell, given the ambiguity and sometimes vagueness of their definitions. This lack 

of formalism prevents different tools to implement the same detection technique for a 

specific code smell. Second, these techniques generate different results, since they are 

usually based on the computation of a particular set of combined metrics, ranging from 

standard object-oriented metrics to metrics defined in ad hoc way for the smell detection 

purpose [Lanza and Marinescu 2006]. Finally, even if the same metrics are used, the 

threshold values might be different because they are established considering different 

factors, such as system domain and its size, organizational practices and the experience 



and understanding of software engineers and programmers that define them. Changing 

the threshold has a large impact on the number of code smells detected. 

The previous factors make it difficult to validate the results generated by 

different techniques, which is made only for small systems and few code smells 

[Mäntylä 2005] [Moha et al. 2010] [Murphy-Hill and Black 2010]. For instance, 

Fontana [2012] investigated six code smells in one software system, named 

GanttProject. Their study showed that a more effective analysis requires a greater 

understanding of the system as well as its code smells. The difficulty lies not only in the 

different interpretations of code smells, but also in the manual identification of the code 

smells, that is also a challenge. Therefore, it is difficult to find open-source systems 

with validated lists of code smells to allow further analysis.  

Using an approach similar to Fontana [2012], this paper presents an in depth 

analysis of the identification and evolution of three code smells in different versions of a 

software system, named MobileMedia [Figueiredo et al. 2008]. We compare the 

accuracy in terms of recall and precision of three code smell detection tools, namely 

inFusion
1
, JDeodorant

2 
[Tsantalis et al. 2008], and PMD

3
. This paper also presents a 

measurement of agreement among the analyzed tools. We focus our investigation on 

three code smells detected by these tools: God Class [Riel 1996], God Method [Fowler 

1999], and Feature Envy [Fowler 1999]. We found that in spite of a high agreement 

among the tools, their individual accuracy varies depending on the code smell being 

analyzed. 

The rest of this paper is organized as follows. Section 2 introduces the code 

smells and the detection tools evaluated. Section 3 describes the study settings. Section 

4 presents the results and tries to answer research questions based on statistical analysis. 

Section 5 discusses the main threats to the validity of this study and the related work 

while Section 6 concludes this paper and points out directions for future work. 

2. Code Smell Definitions and Detection Tools 

Smell Definitions. Code smells were proposed by Kent Beck in Fowler’s book [Fowler 

1999] as a mean to diagnose symptoms that may be indicative of something wrong in 

the system code. In this paper, we focus on three code smells. God Class describes an 

object that knows too much or does too much [Riel 1996]. God Method represents a 

method that has grown too much [Fowler 1999] and tends to centralize the functionality 

of a class. Feature Envy represents a method that seems more interested in a class other 

than the one it actually is in [Fowler 1999]. These smells were selected because they are 

the three predominant smells in the target system [Padilha et al. 2014] that can be 

detected by at least two of the following evaluated tools. 

Detection Tools. In this paper we evaluate three code smell detection tools: inFusion
1
, 

JDeodorant
2
, and PMD

3
. They were selected because they are available for download 

and actively developed and maintained. Their results are easily accessible and they are 

able to detect the three predominant code smells in our target system: MobileMedia. 

More information about the tools evaluated is available on the project website
4
. 

                                                
1 Available at http://www.intooitus.com/products/infusion 
2 Available at http://jdeodorant.com/ 
3 Available at http://pmd.sourceforge.net/ 
4 Available at http://homepages.dcc.ufmg.br/~thpaiva/vem2015 



inFusion
1
. This is a commercial standalone tool for Java, C, and C++ that 

detects 22 code smells, including the three smells of our interest: God Class, God 

Method, and Feature Envy. The detection techniques for all the smells were initially 

based in the detection strategies defined by Lanza and Marinescu [2006], and then 

successively refined using real code. 

JDeodorant
2
 [Tsantalis et al. 2008]. This is an open-source Eclipse plugin for 

Java that detects four code smells: God Class, God Method, Feature Envy, and Switch 

Statement. The detection techniques are based in refactoring opportunities, for God 

Class and Feature Envy and slicing techniques, for God Method [Fontana et al. 2012]. 

PMD
3
. This is an open-source tool for Java and an Eclipse plugin that detects 

many problems in Java code, including two of the smells of our interest: God Class and 

God Method. The detection techniques are based on metrics. For God Class, it relies on 

the detection strategy defined by Lanza and Marinescu [2006] and, for God Method, a 

single metric is used: NLOC. 

3. Study Settings 

Target System. Our study involved the MobileMedia system [Figueiredo et al. 2008], a 

software product line (SPL) for applications that manipulate photo, music, and video on 

mobile devices. This system was selected because it has been previously used in other 

maintainability-related studies [Figueiredo et al. 2008] [Macia et al. 2012], and we have 

access to their developers and experts. Therefore, we were able to recover its reference 

list of actual code smells. Our study involved nine versions object-oriented (1 to 9) of 

MobileMedia, ranging from 1 KLOC to a little over 3 KLOC. Table 1 shows for each 

version: the number of classes, methods, and lines of code. It also contains the total 

number of God Classes (GC), God Methods (GM), and Feature Envy (FE) found in 

each system version.  

Table 1. MobileMedia System Information 

 Size Metrics of MobileMedia Code Smells in the Reference List 

V # of Classes # of Methods LOC GC GM FE Total 
1 24 124 1159 3 9 2 14 
2 25 143 1316 3 7 2 12 
3 25 143 1364 3 6 2 11 
4 30 161 1559 4 8 2 14 
5 37 202 2056 5 8 2 15 
6 46 238 2511 6 9 2 17 
7 50 269 3015 7 7 2 16 
8 50 273 3167 9 7 2 18 
9 55 290 3216 7 6 3 16 

Reference List Protocol. Two experts used their own strategy for detecting, 

individually and manually, the code smells in the system's classes and methods. As a 

result, two lists of entities were created. These lists were merged and the findings 

discussed with a developer of the system to achieve a consensus and validate the entities 

that present a code smell. The result of this discussion generated the final reference list 

used in this paper. 

Research Questions. In this study, first we explore the presence of code smells in the 

system.  For that purpose, we formulate the first two research questions (RQ1 and RQ2) 

presented below. We then analyze and compare the three detection tools based on two 

additional research questions (RQ3 and RQ4). 



RQ1. The number of code smells increase over time?  

RQ2. How the code smells evolve with the system evolution? 

RQ3. What is the accuracy of each tool in identifying relevant code smells? 

RQ4. Do different detection tools agree for the same code smell when applied to the 

same software system? 

4. Statistical Analysis of Results and Discussions 

4.1. Summary of Detected Code Smells 

Table 2 shows the total number of code smell instances identified in the nine versions of 

MobileMedia by each tool. The most conservative tool is inFusion, with a total of 28 

code smell instances. PMD is less conservative, detecting a total of 24 instances for God 

Class and God Method, in contrast with the 20 detected by inFusion. JDeodorant is 

more aggressive in its detections strategy by reporting 254 instances. That is, it detects 

more than nine times the amount of smells of the most conservative tools, inFusion and 

PMD. The reference list contains a total of 133 instances distributed among the nine 

versions of MobileMedia. The complete raw data is available on the project website
4
. 

Table 2. Total number of identified code smells among versions by detection tools 

Code Smell inFusion JDeodorant PMD Reference List 

God Class 3 85 8 47 

God Method 17 100 16 67 

Feature Envy 8 69 - 19 

Total 28 254 24 133 

4.2. Evolution of Code Smells 

This section aims to answer the research questions RQ1 and RQ2 using the code smell 

reference list. Focusing on RQ1, the results summarized in Figure 1a confirmed that 

only the number of God Class increases with the system’s evolution. That was expected, 

since the evolution of the system includes new functionalities and God Classes tend to 

centralize them. The number of God Methods varies, but the last version has fewer 

instances than the first one. This variation is due to more frequent modification of 

methods between versions. For Feature Envy, the number of instances remained 

constant from version 1 up to 8. Only the final version has one additional instance. 

To answer RQ2, we investigate the evolution of each code smell in Figure 1b. In 

Figure 1b each rectangle in a row represents the lifetime of an entity (class or method) 

in the system. The shaded area indicates the presence of a code smell. Each column 

consists of a particular system version. A rectangle is omitted if the entity does not exist 

in that particular version. We found that for 10 out of 14 God Class instances, the 

problem originates with the class. This result is aligned with recent findings [Tufano et 

al. 2015]. For the other 4 instances, the class becomes a code smell in later versions. For 

God Method, there is a lot of variation among versions, some methods are created with 

a code smell (19 of 25) and others become a code smell with the evolution of the system 

(6 of 25). However, when a smell is introduced in a method, it tends to be removed 

permanently in subsequent versions. For Feature Envy, in 3 out of 4 instances, the smell 

originated with the method and persisted during its entire existence. Only one method 

was created without Feature Envy and evolved to present that code smell. 



 

 
(a) Number of code smells per version. (b) Evolution of code smells 

Figure 1. Code Smells in MobileMedia 

4.3. Analysis of Precision and Recall 

This section aims to answer RQ3 presented in Section 3. To assess the tools accuracy to 

detect relevant code smell, we calculated the precision and recall based on the code 

smell reference list. A relevant code smell is a smell from the code smell reference list. 

Table 3 shows the average of recall and precision considering all versions for each tool 

and code smell analyzed. In general, for all code smells, JDeodorant has the highest 

average recall, followed by PMD and inFusion. In spite of its high recall, JDeodorant is 

also the tool that reports the highest number of false positives. That is, it has a lower 

precision. Consequently, the results require a greater validation effort by the developer.  

For God Class and God Method, PMD and inFusion have a similar accuracy, 

i.e., lower recall, but higher precisions when compared to JDeodorant. They achieve 

100% precision for God Method. Higher precision reduces greatly the validation effort 

of the programmer, but at the risk of missing relevant code smell. 

For Feature Envy, inFusion had the worst overall accuracy with 0% of recall and 

precision. JDeodorant had a better accuracy for Feature Envy when compared to 

inFusion, although these were the worst values for JDeodorant. This can be an indicator 

that Feature Envy is a more complex code smell to be automatically detected, when 

compared to seemingly less complex smells, such as God Class and God Method. 

Table 3. Average Recall and Precision for inFusion, JDeodorant and PMD 

 Recall Precision 

Code Smell inFusion JDeodorant PMD inFusion JDeodorant PMD 

God Class 9% 58% 17% 33% 28% 78% 
God Method 26% 50% 26% 100% 35% 100% 
Feature Envy 0% 48% - 0% 13% - 



4.4. Analysis of Agreement 

This section aims to answer RQ4. We calculated the agreement among tools to 

investigate whether different detection tools return the same results for different 

detection algorithms. God Class and God Method are detected by inFusion, JDeodorant, 

and PMD. Feature Envy is detected only by inFusion and JDeodorant.  

Table 4 shows the calculated overall agreement (OA) of the tools and the AC1 

statistic [Gwet 2014], which adjusts the overall agreement probability for chance 

agreement with a 95% confidence interval (CI). The overall agreement (OA) among 

tools is high, ranging from 78.38 % to 99.51%. However, the high agreement is due to 

the greater agreement on true negatives, i.e., most entities are categorized as not 

containing any smell. Comparing the tools results with the code smell reference list, we 

concluded that the occurrence of a smell in the system is indeed rare, as indicated by the 

detection tools. 

Table 4. Overall Agreement (OA) and AC1 Statistics of the Analyzed Tools 

 God Class God Method Feature Envy 

V OA AC1 95% CI OA AC1 95% CI OA AC1 95% CI 

1 80.56% 0,764 [0.576,0.953] 94.62% 0,943 [0.907,0.979] 91.13% 0,903 [0.843,0.963] 

2 81.33% 0,757 [0.565,0.949] 94.80% 0,946 [0.914,0.979] 92.20% 0,915 [0.862,0.967] 

3 81.33% 0,757 [0.565,0.949] 94.91% 0,946 [0.914,0.979] 92.36% 0,916 [0.865,0.968] 

4 82.22% 0,788 [0.631,0.945] 96.71% 0,966 [0.941,0.990] 93.83% 0,934 [0.891,0.976] 

5 78.38% 0,732 [0.574,0.890] 95.40% 0,951 [0.925,0.978] 99.51% 0,995 [0.985,1.000] 

6 85.51% 0,833 [0.724,0.942] 97.77% 0,977 [0.961,0.993] 97.49% 0,974 [0.953,0.995] 

7 86.67% 0,848 [0.749,0.947] 96.79% 0,966 [0.948,0.985] 97.04% 0,970 [0.948,0.991] 

8 82.67% 0,791 [0.672,0.911] 95.62% 0,954 [0.932,0.975] 98.18% 0,981 [0.965,0.998] 

9 83.03% 0,797 [0.685,0.909] 97.04% 0,969 [0.952,0.986] 97.95% 0,979 [0.962,0.996] 

The AC1 statistic is a robust agreement coefficient alternative to Kappa [Gwet 

2014] and other common statistics for inter-rater agreement. It takes a value between 0 

and 1, and communicates levels of agreement using the Altman's benchmark scale for 

Kappa [McCray 2013], that classifies agreement levels into Poor (< 0.20), Fair (0.21 to 

0.40), Moderate (0.41 to 0.60), Good (0.61 to 0.80), and Very Good (0.81 to 1.00) 

[Altman 1991]. We found an AC1 “Very Good” for all smells and versions, with the 

exception of God Class in versions 6 and 7 with an AC1 “Good” with high precision,  

i.e., narrow confidence intervals.  

The variation in the results is due to the implementation of different detection 

techniques or the variation in threshold values for the same technique. In our case, each 

tool uses a different detection technique, so we did not analyze the impact of different 

thresholds in the results. However, we are aware that they influence the results. 

5. Threats to Validity and Related Work 

Threats to Validity. Some limitations are typical of studies like ours, so we discuss the 

study validity with respect to common threats to validity. Internal Validity refers to 

threats of conclusions about the cause and effects in the study [Wohlin et al. 1999]. The 

main factors that could negatively affect the internal validity of the experiment are the 

size of the subject programs and possible errors in the transcription of the result of tool 

analysis. The subjects of our analysis are the nine versions of the MobileMedia that are 

small size programs. About transcription errors, the tools analyzed generate outputs in 

different formats. To avoid transcriptions errors we have reviewed all the data multiple 



times. External Validity concerns the ability to generalize the results to other 

environments [Wohlin et al. 1999]. MobileMedia is a small open source system 

developed by a small team with an academic focus, therefore is not extendable to real 

large scale projects. This limits the generalization of our results. Conclusion validity, on 

the other hand, concerns the relation between the treatments and the outcome of the 

experiment [Wohlin et al. 1999]. This involves the correct analysis of the results of the 

experiment, measurement reliability and reliability of the implementation of the 

treatments. To minimize this threat, we discussed the results data to make a more 

reliable conclusion. 

Related Work. Fontana [2012] presented an experimental evaluation of multiple tools, 

code smells and programs. Similarly, we evaluated tool agreement. However, we used 

the AC1 statistic, a more robust measure than the Kappa Coefficient. We also analyzed 

each tools precision and recall, unlike Fontana [2012]. Chatzigeorgiou and Manakos 

[2010] focused their analysis in evolution of code smells. In our work we also conduct 

this analysis, but at a higher level and not so focused in maintenance activities and 

refactoring. 

6. Conclusions and Future Work 

Comparing tools is a difficult task, especially when involves informal concepts, such as 

code smells. The different interpretations of code smell by researchers and developers 

leads to tools with distinct detection techniques, influencing the results and, 

consequently, the amount of time spent with validation. 

In this paper we analyzed the code smells in the nine versions of MobileMedia 

to evaluate the accuracy of three code smell detection tools, namely inFusion, 

JDeodorant, and PMD to detect three code smells, God Class, God Method and Feature 

Envy. First we analyzed the evolution of MobileMedia code smells and found that the 

number of God Class increases, while the number of methods varies between versions 

and the number of Feature Envy remains constant. We also found that when a smell is 

when a smell is introduced in a method it tends to be removed permanently in 

subsequent versions. 

Using MobileMedia as target system, we evaluated the tools accuracy and 

realized that there is a trade-off between the number of correctly identified entities and 

time spent with validation. For all smells, JDeodorant identified most of the correct 

entities, but generated reports with more false positives. This increases the validation 

effort, but captures the majority of the affected entities. On the other hand, PMD and 

inFusion identified more correct entities, however, also generated reports without some 

affected entities. This reduces validation effort, but neglects to highlight potential code 

smells. In future work, we would like to investigate more the evolution of other code 

smells in a system and how their evolution is related to maintenance activities. 
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