
Evaluation of Duplicated Code Detection Tools in
Cross-Project Context

Johnatan A. de Oliveira1, Eduardo M. Fernandes1, Eduardo Figueiredo1

1Software Engineering Lab, Department of Computer Science,
Federal University of Minas Gerais

Belo Horizonte, Minas Gerais, Brazil

{johnatan-si, eduardomorfernandes}@ufmg.br, figueiredo@dcc.ufmg.br

Abstract. Two or more code segments are considered duplicated when there
is a high rate of similarity among them or they are exactly the same. Aiming
to detect duplicated code in single software projects, several tools have been
proposed. However, in case of cross-project detection, there are few tools. There
is little empirical knowledge about the efficacy of these tools to detect duplicated
code across different projects. Therefore, our goal is to assess the efficacy of
duplicated code detection tools for single projects in cross-project context. It
was concluded that the evaluated tools has no sufficient efficacy in the detection
of some types of duplicated code beyond exact copy-paste. As a result, this work
proposes guidelines for future implementation of tools.

1. Introduction
Duplicated code is a bad smell defined as replication of code segments through the source
code of a software project. One of the problems derived from duplicated code is the high
complexity of refactoring a system with high number of duplicated code. The reason is
because a refactoring would demand changes in various parts of the code. The dissemi-
nation of errors through the system is another issue caused by duplicated code practices,
because errors in a replicated segment are spread throughout the system [Fowler 1999].

In case of duplicated code detection in single software systems, there are
many proposed tools [Juergens et al. 2009, Hotta et al. 2010] and comparative stud-
ies [Bellon et al. 2007]. However, in cross-project detection context, there is no empirical
study. This type of detection may point to similar code segments that appears in differ-
ent projects. Considering systems from a single business domain, it could support code
reuse in development of projects [Bruntink et al. 2005], such as in a software product line
(SPL).

This study aims to assess the efficacy of some duplicated code detection tools for
single projects in cross-project context. For this purpose, it was conducted a literature
review for identification of tools in order to assess their efficacy. As a result, this study
pointed to a need of effective tools in the detection of more types of duplicated code than
copy-paste. Furthermore, this work proposes some guidelines to support the development
of duplicated code detection tools, based on demands detected through this study.

The remainder of this paper is organized as follows. Section 2 presents the back-
ground, describing the types of duplicated code and SPL, and related work that proposed
comparison of duplicated code detection tools. Section 3 discusses the experimental



setup, including the research questions. Section 4 presents the results obtained through
this study, including guidelines proposed for future implementation of detection tools.
Finally, conclusions and future work are presented in Section 5.

2. Background and Related Work
According to [Fowler 1999], bad smells are symptoms of problems in source code. There
are several bad smells defined in literature, but this study focuses on duplicated code,
which has four types [Bellon et al. 2007]: Type I that is simple copy-paste, Type II that
consists of copy-paste with simple variations in identifiers, literals, types, etc., Type III
that is copy-past with variations in operations and code blocks, and Type IV that consists
of code segments with the same computation, but different implementation.

A SPL is a development paradigm based on software platforms (common features
among systems) and customizable features (accordingly to client needs). Systems of a
SPL compose a software product family, and their commonalities are reused in the de-
velopment of new products [Halmans and Pohl 2003]. Therefore, these systems can be
useful to assess the efficacy of tools in the detection of duplicated code, and this study
took advantage of this property to assess tools.

Previous studies assessed the efficacy of duplicated code detection tool. The work
of [Bellon et al. 2007] compares six tools in order to identify their recall and precision,
considering the detection techniques used by each tool and using C and systems developed
in Java programming languages, they noted that the abstract syntax tree-based approaches
tended to have higher precision, however the runtime is greater, token-based approaches
had higher recall but were faster. In other direction, [Burd and Bailey 2002] focused on
the evaluation of five duplicated code detection tools in order to identify the benefits of
detection for preventative maintenance. In his work too have shown that token based
techniques have a high recall but suffer from many false positives.

The present study, in turn, aims to evaluate a set with twenty duplicated code
detection tools, in order to assess their efficacy in the context of cross-project detection,
as well as to report the main features and issues of each tool. Furthermore, this study aims
to conduct tests, for each tool, using as entry a set with twenty-one real software projects
from an specific business domain. Its goal is to assess the efficacy of tools in the detection
of the four types of duplicated code.

3. Experimental Setup
This section presents the experimental setup for this study, including: the strategy for
selecting target systems to be used as input in tool evaluation, the selection of duplicated
code detection tools, and the procedures for installing, running and evaluating each tool
using different sets of system projects as input. Each step of this study is illustrated in
Figure 1 and described in the following subsections. In order to perform this study, the
following research questions were conceived concerning duplicated code detection tools:

• RQ1: What duplicated code detection tools have been reported in literature?
• RQ2: Are the identified tools able to detect the four types of duplicated code in

cross-project context?
• RQ3: Are the evaluated tools able to detect cross-project duplicated code?



Figure 1. Steps of the conducted study.

3.1. Selection of Systems for Running Tools

In order to assess the efficacy of duplicated code detection tools through the running of
each tool, two sets of software systems were selected: a systems academic (SPL) that was
chosen because it allows us to evaluate whether the duplicated code tools are able to find
reused code and e-commerce systems mined from GitHub1. The former was conceived to
support the preliminary assessment of efficacy for each available tool, and the latter was
conceived to be used in the assessment of tools filtered in the previous assessment.

The systems that compose the academic corpus were developed by graduate stu-
dents through aspect-oriented programming with code reuse in an academic course be-
tween 2013 and 2014, at the Federal University of Minas Gerais (UFMG). These systems
were implemented based on a platform system called SimulES, that consists of a software
product line. They were chosen because of the conviction that exists duplicated code
across all the systems, at least in respect to the used platform.

The e-commerce domain was chosen because of activities and the common func-
tions across systems (e.g., purchases and payments). The process of system selection
consisted of three steps: selection of 100 e-commerce bookmarked systems from GitHub,
cleaning of selected systems (files other than .java files were removed), and discard of
systems not implemented in Java (79 were discarded, remaining 21 systems).

3.2. Selection of Detection Tools

Aiming to select duplicated code detection tools to be evaluated in this study, we
conducted an ad hoc review in order to identify the most cited tools in the litera-
ture. This literature review was based on the protocol for systematic literature re-
views [Kitchenham et al. 2009], that suggests the following steps: planning (including
the definition of a review protocol), conducting (including the data extraction) and report-
ing (in this case, we present a table with the collected data).

The literature review returned 19 tools described in Table 1. Columns in Table 1
indicate information about the tools: plug-in (PLG), developed programming language
(PL), open-source or freeware (OSF), detection programming languages (DE), other de-
tected bad smells (OTHER), is online (ON), documented (DO), graphical user interface
(UI), detection technique (TE), and release year (YR) – N/A indicates that the information
is not available in literature or website of the tools.

In order to reduce the amount of tools to be evaluated (given the infeasibility to
evaluate all the found tools), the following inclusion criteria were defined for this study:
the tool must be available online, it must to detect duplicated code in entire software
projects, not in single source files only, it must have been cited in more than one paper,

1http://www.github.com/



it must be compatible with Java programming language, and it must be open source or
freeware for non-commercial use.

In the selection of duplicated code detection tools, the tools CP-
Miner [Li et al. 2004], Java CloneDR [Bellon et al. 2007] and Pattern Insight Clone
Detection2 were discarded because they are paid tools. Furthermore, the tools CCFind-
erX3, CDSW [Murakami et al. 2013], Covet [Burd and Bailey 2002], Dup [Baker 1993],
Duploc [Ducasse et al. 1999], Scorpio [Higo et al. 2013] and Simian4 had to be discarded
because they are not available online.

3.3. Running Tools with Academic Systems

This step consisted of installing and running tools in order to assess their efficacy in
detection of duplicated code. These tools were installed in a Microsoft Windows 7 en-
vironment. DECKARD [Jiang et al. 2007] and DuDe [Wettel and Marinescu 2005] were
discarded because it was not possible to install them. For this purpose, it was used the
academic corpus as input, that is a SPL (in case, SimulES) and, therefore, the evaluated
tools should be able to identify similar code in the SPL.

Considering that some tools were discarded in the previous step, only Check-
style [Moha et al. 2010], Clone Digger [Bulychev and Minea 2008], CodePro Ana-
lytix5, Condenser [Mealy et al. 2007], PMD [Juergens et al. 2009], SDD6, and Sonar-
Qube [Campbell and Papapetrou 2013] were evaluated in this step. The process of run-
ning the selected tools with the academic corpus consists of SimulES been submitted to
clone detection, whose results based the filtering of tools to be used in the next study step.

3.4. Running Tools with e-Commerce Systems

After the evaluation of tools in the previous step, it was verified that only PMD and
Atomiq are able to detect at least Type I of cross-projects duplicated code. Then, they
were evaluated using the e-commerce corpus, in order to assess their efficacy in cross-
project duplicated code detection in real software projects. Both tools display the source
directory of each file involved in the duplicated code occurrence, so it was possible to
identify cross-project detection.

4. Evaluation and Discussion
This section discusses the results obtained through this study, focusing on answering each
research question (Section 4.1). Furthermore, Section 4.2 presents some guidelines to
support future implementation of duplicated code detection tools.

4.1. Answering the Research Questions

RQ1: What duplicated code detection tools have been reported in literature? This study
identified some tools through an ad hoc literature review described in Section 3.2. These
tools are presented in Table 1. Among the 20 studied tools, we identified that: 10 are

2http://patterninsight.com/products/clone-detection/
3http://www.ccfinder.net/ccfinderx.html
4http://www.harukizaemon.com/simian/
5https://developers.google.com/java-dev-tools/download-codepro
6http://sourceforge.net/projects/sddforeclipse/



Table 1. Tools for detection of duplicated code.
Tool PLG PL OSF DE OTHER ON DO UI TE YR
Atomiq No N/A X C, C++,

C#, Java,
others

None X × X Token 2005

CCFinderX No C++ X C, C++,
Java, C#,
COBOL,

others

None × X X Token 2005

CDSW N/A N/A N/A N/A N/A × × N/A State-
ment

2013

CheckStyle Yes Java X Java Large
class, long
method,
long pa-

rameter list

X X X N/A 2001

Clone Dig-
ger

N/A Python X Java,
Lua,

Python

None X X X Tree 2008

CodePro
Analytix

Yes Java × Java None X X X N/A 2001

Condenser No Jython X Java,
Python

None X X × N/A 2002

Covet N/A Java X Java None × × N/A Metric 1996
CP-Miner N/A Java X Java None × × N/A Token 2006
DECKARD No C X Java None X X × AST/

Tree
2007

DuDe No Java X Java None X X × N.F. 2010
Dup N/A C, Lex N/A C None × × N/A Token 1995
Duploc No Small-

talk
N/A Inde-

pendent
None × × X Text 1999

Java
CloneDR

N/A N/A × C, C++,
Java

None X X X AST/
Tree

1998

Pattern In-
sight Clone
Detection

No N/A × C, C++,
Java,
others

None X X X Data
Min-
ing

N/A

PMD Both Java X C, C++,
C#, PHP,

Java,
others

God class,
duplicated

code,
others

X X X N.F. 2002

Scorpio N/A Java X Java None × × N/A PDG/
Graph

2013

SDD Yes Java X Java None X X X N/A 2005
Simian Both Java,

.NET
× C, C++,

C#, Java,
others

None × X X N/A 2003

SonarQube No Java X C, C++,
C#, Java,

PHP,
others

Various
(manual
metrics

analysis)

X X X N/A 2008



compatible with Java, 12 are open source or freeware, 15 are able to detect only duplicated
code, 11 have graphical user interface and 11 are available online.

RQ2: Are the identified tools able to detect the four types of duplicated code in
cross-project context? As mentioned in Section 3.3, among the tools selected though the
literature review, only PMD and Atomiq were able to identify at least one of the duplicated
code types defined in literature (in case, only Type I).

RQ3: Are the evaluated tools able to detect cross-project duplicated code? It was
verified that PMD and Atomiq were able to detect only Type I duplicated code among
different systems. In this case, it was detected duplicated code among the systems that
shared a single framework JadaSite7. Although the tools were able to detect cross-projects
duplicated code in the e-commerce systems, it was difficult to identify the source origin of
duplicated segments because the tools have no usability support for this kind of detection.

4.2. Guidelines for Development of Duplicate Detection Tools
Though the conducted study with a set of tools for detection of duplicated code, it was
conceived five guidelines to support future implementation of tools for this purpose.

G1: To improve the tool usability, in order to minimize the required effort to use
a tool and to understand its outputs. The evaluated tools presented some usability issues
such as: difficulty to navigate between duplicated code occurrences (in general, results
are showed in long lists without result cataloging), difficulty to identify the source file for
each duplicated code (they display only directory path and not source project), lack of du-
plicated code highlighting, lack of click-to-open file for each duplicated code occurrence,
and lack of feature for zooming results.

G2: To provide results analysis through statistical methods, graphical visualiza-
tion or at least numerical indicator such as percentage of lines of duplicated code. It was
identified that the evaluated tools do not show statistical numbers related to the duplicated
code detection or amount of detected duplicated code for each type. These data could be
useful, for instance, in result analysis and comparison of different detection tools.

G3: To combine different techniques (token, tree, etc.) for duplicated code de-
tection, in order to improve the precision of detection results. It could be interesting to
combine different techniques that can be more useful to detect an specific type of dupli-
cated code, in order to increase the precision of the tool.

G4: To export result though different file formats, in order to support further
analysis and integration with other tools. A feature to result export could be useful to
provide an external validation of the result, as well as other processing intended by user.

G5: To provide the selection of projects from different directories to be submitted
to duplicated code detection. A practical selection of projects from different data sources.
This feature would avoid the cost of creating a single project with all the source code of
projects to be analyzed.

4.3. Threats to Validity
The validity of the findings may have been affected by limitations such as: it was con-
ducted an ad hoc review though, to minimize the threats, the review was inspired by

7https://github.com/IT-University-of-Copenhagen/JadaSite



systematic literature review protocol [Kitchenham et al. 2009]; this study focused only
on academic tools, open source or free to use and compatible with Java, although it was
collected a large set of tools; the conducted study used projects from e-commerce domain
only; and lack of knowledge about the tools may have led to a inappropriate use of tools,
though we used default settings.

5. Conclusion and Future Work

Duplicated code is a bad smell that can harm the software development, damaging the
software maintenance. In this context, the duplicated code detection can be useful to
improve the software quality. However, the identification of cross-projects duplicated
code can point to relevant information such as the commonalities among from different
projects and can be useful in the feature extraction to compose new software products
such as in a SPL [Halmans and Pohl 2003].

Through this study, it was not possible to identify an efficient tool for cross-project
duplicated code detection because the tools were able to find only Type I. Aiming to con-
tribute for the community of duplicated code detection, guidelines were proposed to sup-
port future implementations of tools. Among the difficulties and challenges faced during
the development of this study, we can cite: lack of tool documentation, inconsistency of
documentation, online unavailability of tools, and usability issues of tools.

A suggestion for further work is the development a new cross-projects duplicated
code detection tool following, as much as possible, the guidelines proposed in this study.
These guidelines include statistical analysis for indication of duplicated code types pro-
posed in the literature, and combination of different detection techniques, usability, result
export, and features for selection of systems for duplicate code detection.

References

Baker, B. S. (1993). A Program for Identifying Duplicated Code. Journal of Computing
Science and Statistics, pages 49–49.

Bellon, S., Koschke, R., Antoniol, G., Krinke, J., and Merlo, E. (2007). Comparison
and Evaluation of Clone Detection Tools. IEEE Transactions on Software Engineering
(TSE), 33(9):577–591.

Bruntink, M., van Deursen, A., van Engelen, R., and Tourwe, T. (2005). On the Use of
Clone Detection for Identifying Crosscutting Concern Code. IEEE Transactions on
Software Engineering (TSE), 31(10):804–818.

Bulychev, P. and Minea, M. (2008). Duplicate Code Detection Using Anti-unification.
In Proceedings of the Spring/Summer Young Researchers’ Colloquium on Software
Engineering (SYRCoSE), number 2.

Burd, E. and Bailey, J. (2002). Evaluating Clone Detection Tools for Use During Preven-
tative Maintenance. In Proceedings of the 2nd IEEE International Workshop on Source
Code Analysis and Manipulation (SCAM), pages 36–43.

Campbell, G. A. and Papapetrou, P. P. (2013). SonarQube in Action. Manning Publica-
tions Co., Greenwich, CT, USA, 1st edition.



Ducasse, S., Rieger, M., and Demeyer, S. (1999). A Language Independent Approach for
Detecting Duplicated Code. In Proceedings of the IEEE International Conference on
Software Maintenance (ICSM), pages 109–118.

Fowler, M. (1999). Refactoring: Improving the Design of Existing Code. Object Tech-
nology Series. Addison-Wesley.

Halmans, G. and Pohl, K. (2003). Communicating the Variability of a Software-Product
Family to Customers. Journal of Software and Systems Modeling (SoSyM), 2(1):15–36.

Higo, Y., Murakami, H., and Kusumoto, S. (2013). Revisiting Capability of PDG-based
Clone Detection. Technical Report, Graduate School of Information Science and Tech-
nology, Osaka University.

Hotta, K., Sano, Y., Higo, Y., and Kusumoto, S. (2010). Is Duplicate Code More Fre-
quently Modified than Non-duplicate Code in Software Evolution?: An Empirical
Study on Open Source Software. In Proceedings of the joint ERCIM Workshop on
Software Evolution (EVOL) and International Workshop on Principles of Software
Evolution (IWPSE), pages 73–82.

Jiang, L., Misherghi, G., Su, Z., and Glondu, S. (2007). DECKARD: Scalable and Ac-
curate Tree-based Detection of Code Clones. In Proceedings of the 29th International
Conference on Software Engineering (ICSE), pages 96–105.

Juergens, E., Deissenboeck, F., and Hummel, B. (2009). CloneDetective – A Workbench
for Clone Detection Research. In Proceedings of the 31st International Conference on
Software Engineering (ICSE), pages 603–606.

Kitchenham, B., Brereton, O. P., Budgen, D., Turner, M., Bailey, J., and Linkman, S.
(2009). Systematic Literature Reviews in Software Engineering – A Systematic Liter-
ature Review. Journal of Information and Software Technology, 51(1):7–15.

Li, Z., Lu, S., Myagmar, S., and Zhou, Y. (2004). CP-Miner: A Tool for Finding Copy-
paste and Related Bugs in Operating System Code. In Proceedings of the 6th Sym-
posium on Operating Systems Design and Implementation (OSDI), volume 4, pages
289–302.

Mealy, E., Carrington, D., Strooper, P., and Wyeth, P. (2007). Improving Usability of
Software Refactoring Tools. In Proceedings of the 18th IEEE Australian Software
Engineering Conference (ASWEC), pages 307–318.

Moha, N., Gueheneuc, Y.-G., Duchien, L., and Le Meur, A.-F. (2010). DECOR: A
Method for the Specification and Detection of Code and Design Smells. IEEE Trans-
actions on Software Engineering (TSE), 36(1):20–36.

Murakami, H., Hotta, K., Higo, Y., Igaki, H., and Kusumoto, S. (2013). Gapped Code
Clone Detection with Lightweight Source Code Analysis. In Proceedings of the 21st
IEEE International Conference on Program Comprehension (ICPC), pages 93–102.

Wettel, R. and Marinescu, R. (2005). Archeology of Code Duplication: Recovering Du-
plication Chains from Small Duplication Fragments. In Proceedings of the 7th Inter-
national Symposium on Symbolic and Numeric Algorithms for Scientific Computing
(SYNASC), pages 8–pp.


