VisMinerService — A REST Web Service for Source Mining

Luis Paulo da Silva Carvalho'?, Renato Novais', Manoel Gomes de Mendonga Neto®

'Federal Institute of Bahia (IFBA)

*Federal University of Bahia (UFBA)

3Centro de Projeto Fraunhofer para Engenharia de Software e Sistemas at UFBA
{luiscarvalho, renato}@ifba.edu.br, manoel.mendonca@ufba.br

Abstract. Enabling applications to perform source-mining and software
metrics visualization can be a time-consuming task. With this in mind, we are
positive that Web Services are fitting candidates to automate the developing of
such applications. Therefore, this paper presents VisMinerService, a REST
Web Service implementation built upon a static software component,
VisMiner. It is described how the service can be used in order to mine metrics
and other source-code related information. It is also discussed its integration
with three different types of client applications (mobile, desktop/swing and
web application) in order to provide a proof of concept of how
VisMinerService can be used to create platform-independent software to
visualize the mined information.

1. Introduction

Manual collecting of metrics is an unreliable activity, since “too many errors or missing
data badly affect the analysis process” [Sillitti et al. 2003]. Thus, providing ways to
automate the execution of source-mining is an important activity. Plus to that, once the
source-code is mined, it is necessary to portray it in a way that improves the
understanding of the information, so to later aid software engineers to carry
development tasks (e.g. maintenance, refactoring, and reverse engineering).

In order to better assist source-mining and visualization tasks, we consider that is
important to fulfill the following objectives: (a) smoothing the effort to retrieve source
code and metrics information in a way that one could easily build applications to make
use of it (e.g. to either analyze or visualize the data); (b) automating the outsource of the
gathered information in a well defined way, so that it becomes easier to parse and
visualize the mined information; (c) grating the outsourcing in a distributed way (e.g. as
with the use of Web Services), one could easily manage to create client software to
reuse the routines to mine source-codes and metrics remotely.

Web Services have become a standard for sharing data between software
applications over the internet. They enable the creation of technology-neutral, open,
decentralized, reliable software solutions [Pautasso 2014]. Web Services provide
distributed functionalities, which are independent of hardware platform, operating
system and programming language. An example of Web Services implementation,
which has increasingly gained acceptance due to its simpler style to use, is REST Web

Services [Al-Zoubi and Wainer 2009]. REST' is a Web Services’ architectural style that
constrains the interface of the HTTP protocol to a set of standard operations (GET,
POST, PUT, and DELETE).

REST is a fitting candidate to implement service-oriented applications with
flexibility and lower overhead [Hamad et al 2010]. In the same way, it can be used on
the context of source-mining, metrics calculation, and visualization. However, either
few works have explored REST to supply access to metrics using visualization or, if
any, the potentials of using REST services in such field of application have not yet been
experimented to its fullest.

VisMiner is a core library that comprises a set of functionalities dedicated to the
extraction of information from source code files [Mendes et al. 2015]. It enables third-
party applications to mine metrics from on-line Version Control Systems (VCS) as, for
example, GitHub. So far, VisMiner has comprised the following set of metrics: Number
of Lines of Code (LOC), Ciclomatic Complexity (CC), Number of Packages (NOP),
and Number of Methods (NOM).

This work describes an approach by which the VisMiner Library is used as a
component to create a REST Web Service, called VisMinerService. The goal is to
externalize Visminer’s functionalities across the web to enable the development of
distributed service-oriented applications and toolsets to mine and visualize software
data. We have also conducted a preliminary test in the development of multiple clients.
The goal is to show the advantages of a service-oriented architecture for source-mining,
metrics calculation, and visualization.

The rest of the paper is organized as follows: Section 2 discusses related work.
Section 3 presents the VisMinerService. Section 4 exemplifies the use of
VisMinerService. Conclusions and future works are discussed in Section 5.

2. Related work

The use of Web Service-based architectures to mine and visualize metrics obtained from
software repositories is not new. Sillitti et al (2003) investigated the application of XML
and SOAP (Simple Object Access Protocol) to expose functionalities in order to aid the
extraction of metrics across HTTP-enabled networks. SOAP also makes possible the
creation of Web Services. However, as previously stated, REST has later become a
more adopted standard.

Sakamoto et al (2013) proposed the MetricWebAPI, which wraps mechanisms
within a service-oriented framework to mine metrics. It also externalizes data to client
applications via XML documents. However, it is not provided information about how
such client applications can reuse the functionalities of MetricWebAPI. Protocols and
document formats to base the interactions between the service and client applications
are not covered.

Several other projects are intended to mine source-codes, but they either mention
little (or no) remarks on how to be reused by client applications or there is no evidence
that they were design for reuse at all. In this category we could mention: Metrics

1 Short form of REpresentational State Transfer

Grimoire [METRICSGRIMOIRE, 2015], GHTorrent project [GHTORRENT, 2015],
SourceMiner [SOURCEMINER, 2015].

3. VisMinerService

VisMinerService is a REST Web Service built on the top of VisMiner core library. Its
main purpose is to offer functionalities to remote distributed client applications,
enabling the sharing, processing and visualization of software’s mined data. Figure 1
depicts the targeted usage scenario for VisMinerService.

Q @

VisMiner

Github

J
0L

Mobile Apps

Desktop App _
) LK
Other Web Service

Figure 1. VisMinerService’s use scenario

We have embedded VisMinerService with a set of URLs, each one triggering

specific retrievals

from the mined information. Table 1 lists examples of

VisMinerService’s externalized functionalities. The domain was omitted from the
URLs, because it may vary depending on how the service’s server is configured.

Table 1. VisMinerService's current URLs set

http://...projects/byid It retrieves information about a project identified by its ID
http://...committers/byproject It returns all committers from a given project
http://...commit/byproject It retrieves information about all commits of a given project
http://...commits/bycommitter It retrieves commits of a specific committer
http://...commits/numberofbycommitter | It returns the number of commits of a specific committer
http://...commits/bysha It retrieves a commit identified by its SHA®
http://...file/bycommit It fetches files affected by a specific commit
http://...metrics/byfile It retrieves all metrics of an identified file
http://...metrics/bycommit It returns metrics pertaining to a file modified by a commit

2 Secure Hash Algorithm is used by GitHub to identify commits

In the example shown in Figure 2, the “Complexity By Commit” URL filters data
out after being parameterized by a commit's identification key. The commit was
persisted in VisMiner's database at the moment that project's data (from TOMCAT
project) was crawled from its GitHub repository. The retrieved JSON document
represents a collection of key-value pairs. In the specific case of the Ciclomatic
Complexity (CC) metric, key-value pairs are used to associate each file's methods to
their respective complexities (e.g. the method “fromHexString” has summed up a CC's
value of 3). Same as manually done on a web browser, computational agents (i.e. client
software) can access the VisMinerService’s URLs programmatically. By obtaining and
parsing the JSON document, one can uses the information about the metric (and the
associated file) for any specific desired purpose.

€« C' | [} localhost:8080/VisMinerService/v1/metrics/complexitybycommit/13516

[
fileId: 70570,
filePath: "javasorg/apache/tomcat/util/buf/HexUtils.java",
- metrics: [
- o
- keyvalues: [

key: "getDec”,
value: 1

key: "getHex",
value: 1

key: "toHexString",
value: 3

key: "fromHexString",
value: 3

1,
id: "cc’
}
Figure 2. JSON representation of Ciclomatic Complexity (CC)

Client applications (e.g. Mobile Apps, Desktop Applications, and other Web
Services) can reach VisMinerService via a set of URLs (contained in Table 1) in order
to gain access to its remote functionalities. In this case, any software capable of
navigating over the HTTP can be a client. Figure 2, for instance, shows a web browser
(Google Chrome Web Browser) receiving and displaying a JSON [JSON, 2015]
document from the http://...metrics/complexitybycommit URL. This URL is an entry-
point to the service's functionality that retrieves information about metrics related to
files affected by a particular commit.

Section 4 presents three examples of service-oriented applications. The purpose is
to illustrate VisMinerService as a permissive tool that enables the development of
remote client software. The use of the aforementioned URLs (Table 1) is also
exemplified.

4. VisMinerService's multiple-client scenarios of use

In this section we show how different client applications can use VisMinerService. The
purpose is: (i) to reinforce that VisMinerService is platform-independent; and (i1) to

show that client software can perform a multitude of processing on the data obtained
from VisMinerService.

4.1. VisMinerDroid

VisMinerDroid is an ANDROID application that makes use of VisMinerService to
present data visualizations to mobile users. This example comprises two screen
fragments (Figure 3):

o Committers list (left side of Figure 3) — it represents a list containing all
committers from a project retrieved by the mobile application after navigating
to the Attp://...committers/byproject URL;

e Commits per Committer (right side of Figure 3) — it plots a pie chart to display
the percentage of commits sent by committers selected from the list. The mobile
application browses the http.//...commits/numberofbycommitter URL to obtain
the total number of commits authored by each committer. The resulting dataset
is rendered out to a chart. ANDROIDPLOT API [AndroidPlot, 2015] was used
to draw the charts.

Genymotion for personal use - Go...80x800, 240dpi) - 192.168.56.101 = + X Genymotion for personal use - Go...80x800, 240dpi) - 192.168.56.101 - + x

= Committers ATUALIZAR - TammhiE T

Commits per Committer .
William Barker]
Costin Manolache
Fabien Carrion
Filip Hanik
fschumacher
Timothy A. Funk
lan Darwin

Jeremy Boynes

Jean-Frederic Clere

Figure 3. VisMinerDroid

VisMinerDroid is an example of how project-related information can be
displayed by android applications. The advantage is to follow the global tendency of
software becoming resident in mobile devices, without requiring that such applications
retains all the data it might need in local databases. The information can be retrieved
remotely from VisMinerService as soon as it becomes necessary.

4.2. VisMinerSwing

VisMinerSwing is a JAVAX Swing Application intended to show software-related data
to desktop users. In combination with PREFUSE [PREFUSE, 2015] it shows an

interactive tree, which enables the navigation through the data received from
VisMinerService. Figure 4 shows a partial view of VisMinerSwing.

VisMinerSwing navigates to the http://...committers/byproject URL of
VisMinerService to retrieve all committers from the project. After the user chooses one
committer, VisMinerService is contacted again via the http.://...commits/bycommitter
URL to specifically select the commits belonging to the committer. The commits are
then distributed across the tree through a stratification of temporal subsections (commits
per year, month, day, time of the day) as shown on the left side of Figure 4. The right
side of Figure 4 shows the files modified by a particular commit and the corresponding
accumulated values of the metrics.

4 VisMiner Swing -
26 0423
Willam Barker 20 0330
Costin Manolache 03:22
Fabien Carrion !
Filp Harik 1 040
fschuracher 0L:58
Timothy A, Funic 1 05:47 T T e T e R Ty T TS e T
lan Darwin 2014 January 10 1208 java/org/apache/coyote/nttp11/Http1 LAprProtocoljava h%c’v‘: 7;1160
Jeremy Boynes Decernber ' =
Jean-Frederic Clere 2013 November 8 02:54 Cc =100
Jacab John Hookom August 12:22 java/org/apache/coyote/http11/Httpl1AprProcessor java E%CMZIEBQZ
Jim Jaglelski July 10.47 12:42
IR ' 1241 cC=63
:ze”mt‘ H:J'”E i 10:10 1205 Javalorg/apache/coyote/ajp/AjpAprProtocal java NOM = 51
onstantin Kolinko . ; LOC =511
7 04:21 10:14
I<onstant1n Kolinko 0352 0L.06 NOM = 64
Konstantin Preier 02:00 09:10 Java/org/apache/tomeat/utiinet/AprEndpoint java cC=73
Mark Emlyn David Thomas LOC = 1538
Marlc Emiyn David Thomas
Miaden Turk
Olivier Lamy
Peter Rossbach
Remy Maucherat
Remy Maucherat
Rainer Jung
Christopher Schuftz
Christopher Schuttz

Figure 4. VisMinerSwing's commits-related information

VisMinerSwing and VisMinerDroid share the htp://...committers/byproject
URL. This is an example of how different types of application can use VisMinerService
to exhibit the same information, i.e. desktop and mobile users may get access to the
same information through a varied combination of visualizations. Therefore, it is
possible to evidence that VisMinerService contributes to the fulfillment of sharing the
use of project-related information in a platform-independent manner.

4.3. VisMinerWebViewer

The third example of VisMinerService client is a web application that enables the
visualization of commits-related data via web browsers. Figure 5 presents
VisMinerWebViewer. VisMinerWebViewer calls the http.//...commits/bycommitter
URL to capture commits from a chosen committer. In the example (left side of Figure
5), a timeline visualization from VIS.JS [VISIJS, 2015] distributes the commits over a
period of time. Users can navigate on the timeline and select a commit. After selecting a
commit, another visualization based on GOOGLE CHARTS API [GCHARTS, 2015] is
shown. Right side of Figure 5 contains a gauge-like visualization that exhibits metrics
obtained from files affected by the commit. The set of files is extracted from

VisMinerService’s response to navigations to the http://...metrics/bycommit URL.

'@VisMinerWebViewer x ! -

C [localhost:8080/VisMinerWebVie > | [localhost:8080/VisMinerWebViewer/metrics.jsp?commitid=13596
VisMiner Web Viewer

Viewing 75 commit(s)

er Web Viewer 3 Y [VisMiner Web Viewer x ' [&] VisMiner Web Viewer x

iner Web Viewer

2009 etrics of 51 file(s)

Apr Jul
03:36 12:29 02:38 modules/tomcal- e @ @
lorg/apacheftomcat/integration/jmx/JmxObjectManagerSpi.java

12:28 12:22

o
=

2:1

10:36 12:0(
01:24 modules/tomcai-
— litefjavalorg/apache/tomcat/integration/jmx/UJmxHandler java

Figure 5. VisMinerWebViewer's timeline of commits

=

=]

5. Conclusion and future work

In this paper, we have presented VisMinerService, a REST Web Service that intends to
decentralize the extraction and visualization of source-code information. The service is
capable of outputting information in a reusable and platform-independent way. We were
able to prove the concept behind VisMinerService by creating different types of
software, which were fully capable of showing the information gathered from the
service. Such approach is highly recommended, provided that there is global tendency
of information becoming pervasive [Resmini and Rosati 2011]. In this sense, source-
code data (e.g. software metrics) might have to find their way through a plethora of
platforms and visualization solutions while requiring either little or no adaptation at all.
A service-oriented architecture is a powerful candidate to enable this.

In spite of having found strong evidences with regard to the aforesaid
advantages, a more elaborated study must be conducted, because it is necessary to
precisely measure the gain VisMinerService grants to the development of applications
that share and visualize information mined from repositories. The experiment described
in [Kaneshima et al. 2013] might be applicable in this case.

Furthering on the development of VisMinerService, we must expand the options
of mined information (e.g. by adding metrics). As a consequence, more JSON
documents and URLs must be created to allow new outputs. Efforts must also be made
in order to automate the mining of software projects from other Version Control
Systems. Ideally, VisMiner should not be limited to Git/Github’s only. We must also
keep the service up to date with the latest Visminer’s additions: (i) inclusion of new
metrics (e.g. WMC or Weighted Method Count); (i1) processing of varied targeted
languages (C++ and JAVA projects) and (ii1) new visualizations to externalize the new
types of data that comes with such new additions.

It is also necessary to furnish end clients with visualization mechanisms; which
can be achieved by increasing VisMinerService’s URLs with functionalities to automate
the adoption of visualization APIs. The purpose is to reduce the effort required to create
graphical interfaces to show the mined data.

The integration of VisMinerService and the client applications exemplified in
this work is also shown in the captured video: https://youtu.be/MOsNp45{S7c.

References

Al-Zoubi, K., & Wainer, G. (2009, June). “Using REST web-services architecture for
distributed simulation”. In Proceedings of the 2009 ACM/IEEE/SCS 23rd Workshop
on Principles of Advanced and Distributed Simulation (pp. 114-121). IEEE
Computer Society.

GCHARTS (2015), https://developers.google.com/chart/. Acessed 2015, May.
GHTORRENT (2015), http://ghtorrent.org/. Acessed 2015, May.

Hamad, H., Saad, M. and Abed, R. (2009) “Performance Evaluation of RESTful Web
Services for Mobile Devices”, In: International Arab Journal of e-Technology, Vol.
1, No. 3, January 2010.

JSON (2015), http://www.json.org/. Acessed 2015, May.

Kaneshima, Eliana, Maria Cristina Neves de Oliveira, and Rosana Teresinha Vaccare
Braga. "Avaliagdo da Integracao de Aplicagcdes Empresariais usando Web Services:
um Estudo Empirico". In X Workshop de Manutencao de Software Moderna, 2013,
Salvador - BA. Anais do WMSWM 2013, 2013. v. 11. p. 1-8.

Mendes, T. S.; Almeida, D.; Alves, N.S.R; Spinola, R.O. ; Novais, R.L. ; Mendonga, M.
“VisMinerTD — An Open Source Tool to Support the Monitoring of the Technical
Debt Evolution using Software Visualization”. In: 17th International Conference on
Enterprise Information Systems (ICEIS), 2015, Barcelona.

MetricsGrimoire (2015). http://metricsgrimoire.github.io/. Acessed 2015, May.

Pautasso, Cesare. "RESTful web services: principles, patterns, emerging technologies."
Web Services Foundations. Springer New York, 2014. 31-51.

PREFUSE (2015), http://prefuse.org/. Acessed 2015, May.

Resmini, Andrea, and Rosati, Luca. “Pervasive Information Architecture: Design Cross-
Channel User Experiences”. In IEEE Transactions on Professional Communication,
Vol. 54, No. 4. Pp 408-409. IEEE, 2011.

Sakamoto, Yasutaka, Shinsuke Matsumoto, Sachio Saiki, and Masahide Nakamura.
"Visualizing Software Metrics with Service-Oriented Mining Software Repository
for Reviewing Personal Process." In Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed Computing (SNPD), 2013 14th ACIS
International Conference on, pp. 549-554. 1EEE, 2013.

Sillitti, A.; Janes, A.; Succi, G.; Vernazza, T. “Collecting, integrating and analyzing
software metrics and personal software process data”. Euromicro Conference, 2003.
Proceedings. 29th, vol., no., pp.336,342, 1-6 Sept. 2003.

SOURCEMINER (2015), http://www.sourceminer.org/. Acessed 2015, May.
VISJS (2015), http://visjs.org. Acessed 2015, May.

